Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 160, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609989

RESUMO

BACKGROUND: Primary periodic paralysis (PPP) is an inherited disorders of ion channel dysfunction characterized by recurrent episodes of flaccid muscle weakness, which can classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. However, PPP is charactered by remarkable clinical and genetic heterogeneity, and the diagnosis of suspected patients is based on the characteristic clinical presentation then confirmed by genetic testing. At present, there are only limited cohort studies on PPP in the Chinese population. RESULTS: We included 37 patients with a clinical diagnosis of PPP. Eleven (29.7%) patients were tested using a specific gene panel and 26 (70.3%) by the whole-exome sequencing (WES). Twenty-two cases had a genetic variant identified, representing a diagnostic rate of 59.5% (22/37). All the identified mutations were either in the SCN4A or the CACNA1S gene. The overall detection rate was comparable between the panel (54.5%: 6/11) and WES (61.5%: 16/26). The remaining patients unresolved through panel sequencing were further analyzed by WES, without the detection of any mutation. The novel atypical splicing variant c.2020-5G > A affects the normal splicing of the SCN4A mRNA, which was confirmed by minigene splicing assay. Among 21 patients with HypoPP, 15 patients were classified as HypoPP-2 with SCN4A variants, and 6 HypoPP-1 patients had CACNA1S variants. CONCLUSIONS: Our results suggest that SCN4A alleles are the main cause in our cohort, with the remainder caused by CACNA1S alleles, which are the predominant cause in Europe and the United States. Additionally, this study identified 3 novel SCN4A and 2 novel CACNA1S variants, broadening the mutation spectrum of genes associated with PPP.


Assuntos
Paralisia Periódica Hipopotassêmica , Distrofias Musculares , Humanos , Paralisia Periódica Hipopotassêmica/genética , Alelos , Paralisia , China , Canal de Sódio Disparado por Voltagem NAV1.4/genética
3.
Muscle Nerve ; 68(4): 439-450, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515374

RESUMO

INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials.


Assuntos
Canalopatias , Paralisia Periódica Hipopotassêmica , Distrofias Musculares , Paralisias Periódicas Familiares , Humanos , Paralisias Periódicas Familiares/diagnóstico por imagem , Paralisia Periódica Hipopotassêmica/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Imageamento por Ressonância Magnética , Paralisia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação
4.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37139703

RESUMO

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Assuntos
Paralisia Periódica Hipopotassêmica , Camundongos , Humanos , Animais , Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/metabolismo , Células HEK293 , Mutação/genética , Ativação do Canal Iônico , Citosol/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo
5.
Eur Rev Med Pharmacol Sci ; 27(5): 1767-1773, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930492

RESUMO

BACKGROUND: Primary hypokalemic periodic paralysis (HypoPP), a rare skeletal muscle channelopathy resulting in episodic muscle weakness or paralysis under hypokalemic conditions, is caused by autosomal-dominant genetic mutations. HypoPP limits physical activity, and cardiac arrhythmias during paralytic attacks have been reported. We describe a rare familial HypoPP case complicated by sinus arrest and syncope requiring urgent temporary pacemaker implantation. CASE REPORT: A 27-year-old Vietnamese man with a family history of periodic paralysis presented with his third attack of muscle weakness triggered by intense football training the previous day. Clinical and laboratory features justified a HypoPP diagnosis. During intravenous potassium replacement, the patient experienced syncopal sinus arrest requiring urgent temporary pacemaker implantation. The patient gradually improved, responding favorably to oral potassium supplements. Genetic testing revealed an Arg1132Gln mutation in the sodium ion channel (SCN4A, chromosome 17: 63947091). At discharge, the patient received expert consultation regarding nonpharmacological preventive strategies, including avoidance of vigorous exercise and carbohydrate-rich diet. CONCLUSIONS: No evidence has established a relationship between hypokalemia and sinus arrest, and no specific treatment exists for familial HypoPP due to SCN4A mutation. Clinician awareness of this rare condition will promote appropriate diagnostic approaches and management strategies for acute paralytic attacks. Treatment should be tailored according to HypoPP phenotypes and genotypes.


Assuntos
Hipopotassemia , Paralisia Periódica Hipopotassêmica , Humanos , Paralisia Periódica Hipopotassêmica/diagnóstico , Paralisia Periódica Hipopotassêmica/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação , Potássio , Debilidade Muscular
6.
Neuromuscul Disord ; 33(3): 270-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796140

RESUMO

We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies.


Assuntos
Síndrome de Andersen , Canalopatias , Paralisia Periódica Hipopotassêmica , Transtornos Miotônicos , Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hipopotassêmica/genética , Prevalência , Canalopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação , Músculo Esquelético , Transtornos Miotônicos/genética , Síndrome de Andersen/genética
7.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835142

RESUMO

Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.


Assuntos
Síndromes Miastênicas Congênitas , Simportadores , Humanos , Albuterol , Amifampridina , Inibidores da Colinesterase , Proteínas Mitocondriais/genética , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Junção Neuromuscular/patologia , Receptores Colinérgicos/genética , Simportadores/genética , Transmissão Sináptica
8.
Sci Rep ; 13(1): 2538, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782059

RESUMO

Skeletal muscle sodium channel disorders give rise to episodic symptoms such as myotonia and/or periodic paralysis. Chronic symptoms with permanent weakness are not considered characteristic of the phenotypes. Muscle fat replacement represents irreversible damage that inevitably will impact on muscle strength. This study investigates muscle fat replacement and contractility in patients with pathogenic SCN4A variants compared to healthy controls. T1-weighted and 2-point Dixon MRI of the legs were conducted to assess fat replacement. Stationary dynamometry was used to assess muscle strength. Contractility was determined by maximal muscle contraction divided by cross-sectional muscle area. The average cross-sectional intramuscular fat fraction was greater in patients compared with controls by 2.5% in the calves (95% CI 0.74-4.29%, p = 0.007) and by 2.0% in the thighs (95% CI 0.75-3.2%, p = 0.003). Muscle contractility was less in patients vs. controls by 14-27% (p < 0.05). Despite greater fat fraction and less contractility, absolute strength was not significantly less. This study quantitatively documents greater fat fraction and additionally describes difference in muscle contractility in a large cohort of patients with skeletal muscle sodium channel disorders. The clinical impact of these abnormal findings is likely limited as muscle hypertrophy in the patients served to preserve absolute muscle strength. Subgroup analysis indicated significant difference in phenotype by genotype, however these findings lack statistical significance and serve as inspiration for future researchers to probe into the geno- phenotype relationship in these disorders.Trial registration: The study was registered at http://clinicaltrials.gov (identifier: NCT04808388).


Assuntos
Canalopatias , Doenças Musculares , Miotonia , Humanos , Estudos Transversais , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/patologia , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canais de Sódio/genética , Canalopatias/patologia
9.
Brain Dev ; 45(4): 205-211, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36628799

RESUMO

BACKGROUND: Hyperkalemic periodic paralysis (HyperPP) is an autosomal dominantly inherited disease characterized by episodic paralytic attacks with hyperkalemia, and is caused by mutations of the SCN4A gene encoding the skeletal muscle type voltage-gated sodium channel Nav1.4. The pathological mechanism of HyperPP was suggested to be associated with gain-of-function changes for Nav1.4 gating, some of which are defects of slow inactivation. CASE PRESENTATION & METHODS: We identified a HyperPP family consisting of the proband and his mother, who showed a novel heterozygous SCN4A variant, p.V792G, in an inner pore lesion of segment 6 in Domain II of Nav1.4. Clinical and neurophysiological evaluations were conducted for the proband and his mother. We explored the pathogenesis of the variant by whole-cell patch clamp technique using HEK293T cells expressing the mutant Nav1.4 channel. RESULTS: Functional analysis of Nav1.4 with the V792G mutation revealed a hyperpolarized shift of voltage-dependent activation and fast inactivation. Moreover, steady-state slow inactivation in V792G was impaired with larger residual currents in comparison with wild-type Nav1.4. CONCLUSION: V792G in SCN4A is a pathogenic variant associated with the HyperPP phenotype and the inner pore lesion of Nav1.4 plays a crucial role in slow inactivation.


Assuntos
Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hiperpotassêmica/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Células HEK293 , Músculo Esquelético , Mutação/genética
10.
Pract Neurol ; 23(1): 74-77, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36192135

RESUMO

A 21-year-old woman developed an acute myotonic reaction while undergoing anaesthesia using succinylcholine. Examination later showed she had shoulder, neck and calf hypertrophy, bilateral symmetrical ptosis and eyelid, handgrip and percussion myotonia. Peripheral neurophysiology studies identified significant, continuous myotonic discharges in both upper and lower limbs. Genetic analysis identified a c.3917G>A (p.Gly1306Glu) mutation in the SCN4A gene, confirming a diagnosis of sodium channel myotonia. Succinylcholine and other depolarising agents can precipitate life-threatening acute myotonic reactions when given to patients with myotonia. Patients with neuromuscular disorders are at an increased risk of perioperative anaesthetic complications. We report a woman who developed an acute myotonic reaction whilst undergoing anaesthesia, in the context of an unrecognised myotonic disorder. We then discuss an approach to the diagnosis of myotonic disorders.


Assuntos
Anestesia , Miotonia , Transtornos Miotônicos , Feminino , Humanos , Adulto Jovem , Adulto , Succinilcolina/efeitos adversos , Força da Mão , Transtornos Miotônicos/induzido quimicamente , Transtornos Miotônicos/diagnóstico , Miotonia/induzido quimicamente , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
11.
Muscle Nerve ; 66(6): 757-761, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116128

RESUMO

INTRODUCTION/AIMS: Mutations in the SCN4A gene encoding a voltage-gated sodium channel (Nav1.4) cause hyperkalemic periodic paralysis (HyperPP) and hypokalemic periodic paralysis (HypoPP). Typically, both HyperPP and HypoPP are considered as monogenic disorders caused by a missense mutation with a large functional effect. However, a few cases with atypical periodic paralysis phenotype have been caused by multiple mutations in ion-channel genes expressed in skeletal muscles. In this study we investigated the underlying pathogenic mechanisms in such cases. METHODS: We clinically assessed two families: proband 1 with HyperPP and proband 2 with atypical periodic paralysis with hypokalemia. Genetic analyses were performed by next-generation sequencing and conventional Sanger sequencing, followed by electrophysiological analyses of the mutant Nav1.4 channels expressed in human embryonic kidney 293T (HEK293T) cells using the whole-cell patch-clamp technique. RESULTS: In proband 1, K880del was identified in the SCN4A gene. In proband 2, K880del and a novel mutation, R1639H, were identified in the same allele of the SCN4A gene. Functional analyses revealed that the K880del in SCN4A has a weak functional effect on hNav1.4, increasing the excitability of the sarcolemma, which could represent a potential pathogenic factor. Although R1639H alone did not reveal functional changes strong enough to be pathogenic, Nav1.4 with both K880del and R1639H showed enhanced activation compared with K880del alone, indicating that R1639H may modify the hNav1.4 channel function. DISCUSSION: A cumulative effect of variants with small functional alterations may be considered as the underpinning oligogenic pathogenic mechanisms for the unusual phenotype of periodic paralysis.


Assuntos
Paralisia Periódica Hipopotassêmica , Distrofias Musculares , Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hiperpotassêmica/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Células HEK293 , Mutação/genética , Paralisia
12.
Neuromuscul Disord ; 32(10): 811-819, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050252

RESUMO

The non-dystrophic myotonias are inherited skeletal muscle disorders characterized by skeletal muscle stiffness after voluntary contraction, without muscle atrophy. Based on their clinical features, non-dystrophic myotonias are classified into myotonia congenita, paramyotonia congenita, and sodium channel myotonia. Using whole-exome next-generation sequencing, we identified a L703P mutation (c.2108T>C, p.L703P) in SCN4A in a Chinese family diagnosed with non-dystrophic myotonias. The clinical findings of patients in this family included muscle stiffness and hypertrophy. The biophysical properties of wildtype and mutant channels were investigated using whole-cell patch clamp. L703P causes both gain-of-function and loss-of-function changes in Nav1.4 properties, including decreased current density, impaired recovery, enhanced activation and slow inactivation. Our study demonstrates that L703P is a pathogenic variant for myotonia, and provides additional electrophysiological information for understanding the pathogenic mechanism of SCN4A-associated channelopathies.


Assuntos
Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação , Miotonia/genética , Miotonia/diagnóstico , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
13.
J Neurol ; 269(12): 6406-6415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907044

RESUMO

Non-dystrophic myotonias (NDM) are rare skeletal muscle channelopathies, mainly linked to two voltage-gated ion channel genes, CLCN1 and SCN4A. The aim of this study is to identify the clinical and genetic features of patients with NDM in Japan. We collected a Japanese nationwide case series of patients with clinical diagnosis of NDM (1999-2021). Among 71 out of 88 pedigrees, using Sanger and next-generation sequencing targeting both CLCN1 and SCN4A genes, variants classified as pathogenic/likely pathogenic/unknown significance were detected from CLCN1 (31 probands), SCN4A (36 probands), or both genes (4 probands), and 11 of them were novel. Pedigrees carrying mono-allelic CLCN1 variants were more commonly seen than that with bi-allelic/double variants (24:7). Compared to patients with CLCN1 variants, patients harboring SCN4A variants showed younger onset age (5.64 ± 4.70 years vs. 9.23 ± 5.21 years), fewer warm-up phenomenon, but more paramyotonia, hyperCKemia, transient muscle weakness, and cold-induced myotonia. Haplotype analysis verified founder effects of the hot spot variants in both CLCN1 (p.T539A) and SCN4A (p.T1313M). This study reveals variants in CLCN1 and SCN4A from 80.7% of our case series, extending genetic spectrum of NDM, and would further our understanding of clinical similarity/diversity between CLCN1- and SCN4A-related NDM, as well as the genetic racial differences.


Assuntos
Miotonia Congênita , Miotonia , Humanos , Lactente , Pré-Escolar , Criança , Miotonia/genética , Efeito Fundador , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Japão , Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética
14.
Medicine (Baltimore) ; 101(29): e29591, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866763

RESUMO

BACKGROUND: This study aimed to characterize the genetic, pathological, and clinical alterations of 17 patients in China presenting with nondystrophic myotonia (NDM) and to analyze the relationship between genotype and clinical phenotype. METHODS: CLCN1 and SCN4A genes in patients with clinical features and muscle pathology indicative of NDM were sequenced. Furthermore, KCNE3 and CACNA1S genes were assessed in patients with wild-type CLCN1 and SCN4A. RESULTS: Patients may have accompanying atypical myopathy as well as muscle hypertrophy, secondary dystonia, and joint contracture as determined by needle electromyography. All the study participants were administered mexiletine in combination with carbamazepine and showed significant improvements in myotonia symptoms in response to this therapy. CLCN1 gene mutation was detected in 8 cases diagnosed with myotonia congenital using gene screening. The detected mutations included 5 missense, 2 nonsense, 1 deletion, and 2 insertions. Further gene analysis showed 4 mutations in the SCN4A gene in patients diagnosed with paramyotonia congenita. CONCLUSIONS: Myotonia congenita and paramyotonia congenita are the predominant forms of NDM in China. NDM may be best diagnosed using genetic analysis in associated with clinical features.


Assuntos
Canais de Cloreto/genética , Miotonia , Transtornos Miotônicos , Humanos , Mutação , Miotonia/diagnóstico , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
15.
J Cell Mol Med ; 26(14): 3828-3836, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670010

RESUMO

Congenital myasthenic syndrome (CMS) encompasses a heterogeneous group of inherited disorders affecting nerve transmission across the neuromuscular junction. The aim of this study was to characterize the clinical, physiological, pathohistological and genetic features of nine unrelated Chinese patients with CMS from a single neuromuscular centre. A total of nine patients aged from neonates to 34 years were enrolled who exhibited initial symptoms. Physical examinations revealed that all patients exhibited muscle weakness. Muscle biopsies demonstrated multiple myopathological changes, including increased fibre size variation, myofibrillar network disarray, necrosis, myofiber grouping, regeneration, fibre atrophy and angular fibres. Genetic testing revealed six different mutated genes, including AGRN (2/9), CHRNE (1/9), GFPT1 (1/9), GMPPB (1/9), PLEC (3/9) and SCN4A (1/9). In addition, patients exhibited differential responses to pharmacological treatment. Prompt utilization of genetic testing will identify novel variants and expand our understanding of the phenotype of this rare syndrome. Our findings contribute to the clinical, pathohistological and genetic spectrum of congenital myasthenic syndrome in China.


Assuntos
Síndromes Miastênicas Congênitas , Atrofia , Biópsia , Humanos , Mutação/genética , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Fenótipo , Transmissão Sináptica
16.
Am J Physiol Cell Physiol ; 323(2): C478-C485, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759432

RESUMO

Hypokalemic periodic paralysis (HypoPP) is a channelopathy of skeletal muscle caused by missense mutations in the voltage sensor domains (usually at an arginine of the S4 segment) of the CaV1.1 calcium channel or of the NaV1.4 sodium channel. The primary clinical manifestation is recurrent attacks of weakness, resulting from impaired excitability of anomalously depolarized fibers containing leaky mutant channels. Although the ictal loss of fiber excitability is sufficient to explain the acute episodes of weakness, a deleterious change in voltage sensor function for CaV1.1 mutant channels may also compromise excitation-contraction coupling (EC-coupling). We used the low-affinity Ca2+ indicator Oregon Green 488 BAPTA-5N (OGB-5N) to assess voltage-dependent Ca2+-release as a measure of EC-coupling for our knock-in mutant mouse models of HypoPP. The peak ΔF/F0 in fibers isolated from CaV1.1-R528H mice was about two-thirds of the amplitude observed in WT mice; whereas in HypoPP fibers from NaV1.4-R669H mice the ΔF/F0 was indistinguishable from WT. No difference in the voltage dependence of ΔF/F0 from WT was observed for fibers from either HypoPP mouse model. Because late-onset permanent muscle weakness is more severe for CaV1.1-associated HypoPP than for NaV1.4, we propose that the reduced Ca2+-release for CaV1.1-R528H mutant channels may increase the susceptibility to fixed myopathic weakness. In contrast, the episodes of transient weakness are similar for CaV1.1- and NaV1.4-associated HypoPP, consistent with the notion that acute attacks of weakness are primarily caused by leaky channels and are not a consequence of reduced Ca2+-release.


Assuntos
Canais de Cálcio Tipo L , Paralisia Periódica Hipopotassêmica , Canal de Sódio Disparado por Voltagem NAV1.4 , Animais , Canais de Cálcio Tipo L/genética , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Paralisia Periódica Hipopotassêmica/genética , Camundongos , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.4/genética
17.
Muscle Nerve ; 66(2): 148-158, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644941

RESUMO

INTRODUCTION/AIMS: Consistency of differences between non-dystrophic myotonias over time measured by standardized clinical/patient-reported outcomes is lacking. Evaluation of longitudinal data could establish clinically relevant endpoints for future research. METHODS: Data from prospective observational study of 95 definite/clinically suspected non-dystrophic myotonia participants (six sites in the United States, United Kingdom, and Canada) between March 2006 and March 2009 were analyzed. Outcomes included: standardized symptom interview/exam, Short Form-36, Individualized Neuromuscular Quality of Life (INQoL), electrophysiological short/prolonged exercise tests, manual muscle testing, quantitative grip strength, modified get-up-and-go test. Patterns were assigned as described by Fournier et al. Comparisons were restricted to confirmed sodium channelopathies (SCN4A, baseline, year 1, year 2: n = 34, 19, 13), chloride channelopathies (CLCN1, n = 32, 26, 18), and myotonic dystrophy type 2 (DM2, n = 9, 6, 2). RESULTS: Muscle stiffness was the most frequent symptom over time (54.7%-64.7%). Eyelid myotonia and paradoxical handgrip/eyelid myotonia were more frequent in SCN4A. Grip strength and combined manual muscle testing remained stable. Modified get-up-and-go showed less warm up in SCN4A but remained stable. Median post short exercise decrement was stable, except for SCN4A (baseline to year 2 decrement difference 16.6% [Q1, Q3: 9.5, 39.2]). Fournier patterns type 2 (CLCN1) and 1 (SCN4A) were most specific; 40.4% of participants had a change in pattern over time. INQoL showed higher impact for SCN4A and DM2 with scores stable over time. DISCUSSION: Symptom frequency and clinical outcome assessments were stable with defined variability in myotonia measures supporting trial designs like cross over or combined n-of-1 as important for rare disorders.


Assuntos
Canalopatias , Miotonia Congênita , Miotonia , Distrofia Miotônica , Canais de Cloreto/genética , Força da Mão , Humanos , Mutação , Miotonia/diagnóstico , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida
18.
Dis Markers ; 2022: 3736104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401884

RESUMO

Background: Liver hepatocellular carcinoma (LIHC) is the second leading cause of tumor-related death in the world. Carvacrol was also found to inhibit multiple cancer types. Here, we proposed that Carvacrol inhibited LIHC. Methods: We used MTT assay to determine the inhibition of Carvacrol on LIHC cells. BATMAN-TCM was used to predict targets of Carvacrol. These targets were further screened by their survival association and expression in cancer using TCGA data. The bioinformatic screened candidates were further validated in in vitro experiments and clinical samples. Finally, docking models of the interaction of Carvacrol and target protein were conducted. Results: Carvacrol inhibited the viability of LIHC cell lines. 40 target genes of Carvacrol were predicted, 8 of them associated with survival. 4 genes were found differentially expressed in LIHC vs. normal liver. Among these genes, the expression of SLC6A3 and SCN4A was found affected by Carvacrol in LIHC cells, but only SLC6A3 correlated with the viability inhibition of Carvacrol on LIHC cell lines. A docking model of the interaction of Carvacrol and SLC6A3 was established with a good binding affinity. SLC6A3 knockdown and expression revealed that SLC6A3 promoted the viability of LIHC cells. Conclusion: Carvacrol inhibited the viability of LIHC cells by downregulating SLC6A3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cimenos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo
19.
BMC Neurol ; 22(1): 17, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996390

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. CASE PRESENTATION: We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband's father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. CONCLUSION: This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Miotonia , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Humanos , Masculino , Proteínas da Mielina , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Proteínas
20.
Am J Med Genet A ; 188(4): 1251-1258, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913263

RESUMO

Essential tremor (ET) is a neurological disorder characterized by bilateral and symmetric postural, isometric, and kinetic tremors of forelimbs produced during voluntary movements. To date, only a single SCN4A variant has been suggested to cause ET. In continuation of the previous report on the association between SCN4A and ET in a family from Spain, we validated the pathogenicity of a novel SCN4A variant and its involvement in ET in a second family affected by this disease. We recruited a Kurdish family with four affected members manifesting congenital tremor. Using whole-exome sequencing, we identified a novel missense variant in SCN4A, NM_000334.4:c.4679C>T; p.(Pro1560Leu), thus corroborating SCN4A's role in ET. The residue is highly conserved across vertebrates and the substitution is predicted to be pathogenic by various in silico tools. Western blotting and immunocytochemistry performed in cells derived from one of the patients showed reduced immunoreactivity of SCN4A as compared to control cells. The study provides supportive evidence for the role of SCN4A in the etiology of ET and expands the phenotypic spectrum of channelopathies to this neurological disorder.


Assuntos
Canalopatias , Tremor Essencial , Animais , Consanguinidade , Tremor Essencial/genética , Humanos , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...